Rutgers University: Algebra Written Qualifying Exam January 2019: Problem 2 Solution (Partial)

Exercise. A ring is called completely left reducible if it is a direct sum of left ideals which are simple modules over the ring. For what integers n is the $\operatorname{ring} \mathbb{Z} / n \mathbb{Z}$ completely left reducible?

Solution.

Since $\mathbb{Z} / 0 \mathbb{Z} \cong \mathbb{Z}$ and $\mathbb{Z} /(-n \mathbb{Z})=\mathbb{Z} / n \mathbb{Z}$, we only need to check $n \geq 0$
To be a simple module: no nontrivial proper submodules
$n=1: \mathbb{Z} / \mathbb{Z}=\{0\}$ is completely left reducible.
$n=0: \mathbb{Z}$
The ideals of \mathbb{Z} are $\langle m\rangle=m \mathbb{Z}$ for $m \in \mathbb{Z}$.
For $m_{1}, m_{2} \neq 0$,

$$
m_{1} m_{2} \in m_{1} \mathbb{Z} \cap m_{2} \mathbb{Z} \text { and } m_{1} m_{2} \neq 0
$$

$\Longrightarrow m_{1} \mathbb{Z}$ and $m_{2} \mathbb{Z}$ have a nontrivial intersection
$\Longrightarrow m_{1} m_{2} \mathbb{Z}$ is a submodule of $m_{1} \mathbb{Z}$ and $m_{2} \mathbb{Z}$
$m_{1} \mathbb{Z}$ and $m_{2} \mathbb{Z}$ are not simple.
Therefore, the only decomposition of \mathbb{Z} is

$$
\begin{aligned}
\mathbb{Z} & =I_{1} \oplus \cdots \oplus I_{\ell} \\
& =\mathbb{Z} \oplus 0 \oplus \cdots \oplus 0
\end{aligned}
$$

Show that \mathbb{Z} is not a simple \mathbb{Z}-module.
\mathbb{Z} has nontrivial proper sub-modules (e.g. $2 \mathbb{Z}$)
NOT completely left reducible
$n=p, p$ prime: Suppose $\mathbb{Z} / p \mathbb{Z}$ is not a simple $\mathbb{Z} / p \mathbb{Z}$ module .
Then it has a nontrivial submodule, which is a subgroup.
But this would have to have order p, so it is not proper
$\Longrightarrow \mathbb{Z} / p \mathbb{Z}$ is a simple module over itself
$\mathbb{Z} / p \mathbb{Z}$ is completely left reducible
$n=p_{1} \ldots p_{\ell}$ where p_{i} are distinct primes

$$
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} /\left(p_{1} Z\right) \oplus \cdots \oplus \mathbb{Z} /\left(p_{\ell} \mathbb{Z}\right) \text { as rings }
$$

Where $\mathbb{Z} /\left(p_{j} \mathbb{Z}\right)$ are ideals.
Show: Each is a simple module over $\mathbb{Z} / n \mathbb{Z}$
(continue solution)

