Rutgers University: Algebra Written Qualifying Exam January 2019: Problem 2 Solution (Partial)

Exercise. A ring is called completely left reducible if it is a direct sum of left ideals which are simple modules over the ring. For what integers n is the ring $\mathbb{Z}/n\mathbb{Z}$ completely left reducible?

Solution. Since $\mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$ and $\mathbb{Z}/(-n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z}$, we only need to check $n \geq 0$ To be a **simple module:** no nontrivial proper submodules n = 1: $\mathbb{Z}/\mathbb{Z} = \{0\}$ is completely left reducible. n=0: \mathbb{Z} The ideals of \mathbb{Z} are $\langle m \rangle = m\mathbb{Z}$ for $m \in \mathbb{Z}$. For $m_1, m_2 \neq 0$, $m_1m_2 \in m_1\mathbb{Z} \cap m_2\mathbb{Z}$ and $m_1m_2 \neq 0$ $\implies m_1\mathbb{Z}$ and $m_2\mathbb{Z}$ have a nontrivial intersection $\implies m_1 m_2 \mathbb{Z}$ is a submodule of $m_1 \mathbb{Z}$ and $m_2 \mathbb{Z}$ $m_1\mathbb{Z}$ and $m_2\mathbb{Z}$ are not simple. Therefore, the only decomposition of \mathbb{Z} is $\mathbb{Z} = I_1 \oplus \cdots \oplus I_{\ell}$ $=\mathbb{Z}\oplus 0\oplus\cdots\oplus 0$ Show that \mathbb{Z} is not a simple \mathbb{Z} -module. \mathbb{Z} has nontrivial proper sub-modules (e.g. $2\mathbb{Z}$) NOT completely left reducible n = p, p prime: Suppose $\mathbb{Z}/p\mathbb{Z}$ is not a simple $\mathbb{Z}/p\mathbb{Z}$ module. Then it has a nontrivial submodule, which is a subgroup. But this would have to have order p, so it is not proper $\implies \mathbb{Z}/p\mathbb{Z}$ is a simple module over itself $\mathbb{Z}/p\mathbb{Z}$ is completely left reducible $n = p_1 \dots p_\ell$ where p_i are distinct primes $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/(p_1Z) \oplus \cdots \oplus \mathbb{Z}/(p_\ell\mathbb{Z})$ as rings Where $\mathbb{Z}/(p_j\mathbb{Z})$ are ideals. **Show:** Each is a simple module over $\mathbb{Z}/n\mathbb{Z}$ (continue solution)